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Abstract

Particle Swarm Optimization (PSO) is the most famous metaheuristic algorithm for optimization, inspired from swarm of species. PSO can be
used in various problems related to engineering and sciences. In this study, a sparse representation based PSO (Sparse-PSO) algorithm has been
presented. Comparison of proposed Sparse-PSO with Standard-PSO has been done though evaluation over several standard benchmark objective
functions. Our proposed Sparse-PSO method takes less computation time and provides better solution for almost all benchmark objective
functions as compared to Standard-PSO method. Execution time reduction is the advantage gained through proposed Sparse-PSO.
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Nomenclature

Vel velocity direction

Pos position of particle

r current iteration

m particular dimension at i particle
W inertia weight whose value is 1

h; and h; random numbers in the interval (0, 1)
Yiand P> positive acceleration constants

N population of size

M number of dimensions

R number of iterations

Py personal best

Gp global best

1. Introduction

Nature Inspired Algorithms (NIA) are the most prominent strategies developed from natural surroundings [1] and mostly used
in optimization tasks. Swarm based Intelligence algorithm is one of the category of NIA which is based on the cooperative
behavior of swarm members. Particle Swarm Optimization algorithm (PSO) belongs to swarm based metaheuristic algorithm
and was proposed in 1995 by J. Kennedy and R. Eberhart [2], [3]. PSO is encouraged by the vibrant movement of insects,
birds, fishes, etc. In the field of science and engineering, PSO has been utilized to tackle non-differentiable, non-linear, and
multimodal optimization problems [4]-[7]. Drawbacks such as inadequate speed-up for reaching optimum point and
unsatisfactory efficiency of PSO in some studies, motivate for further development and enhancement in PSO. PSO is a simple
to-actualize algorithm and furthermore has less customizable boundaries than practically equivalent to algorithms. In recent
years many improvements have been done in PSO for many application areas of optimization such as chaos based PSO [8] to
improve convergence speed, diminishing population based PSO to meet the swam on the most favorable point [9], FCPSO
based on balancing the diversity of location to achieve convergence [10], and many more. Nature inspired optimization
techniques are also used in field of signal processing to optimize adaptive noise canceller [11], to improve the range of search
space [12], to filter the noisy signals [13].

Basically, the execution of PSO starts with a randomly distributed particles (population of solutions) inside the search space.
As the iterations continue, the particles move as general group towards a most favorable point [2]. To appraise the optimality of
each solution (particle) fitness function is evaluated in each cycle after that updation mechanism is applied to update the
location of each particle so that they reach to optimal point and helps in convergence. This process of execution is repeated
many times on particles to converge at global optima. All the above steps take long computation time if fitness objective
function is more complex and it is difficult to achieve significant improvement.
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The main aim of this paper is to gain speed-up by reducing computation time and accomplish better efficiency with the help of
proposed Sparse-PSO. The rest of the paper is organized as follows: a basic description of the Standard-PSO algorithm has
been provided in Section II. The proposed Sparse-PSO algorithm has been explained in Section III. Section IV displays the
experiment results for the proposed approach and compared it with results for Standard-PSO. Section V contains a summary
and concluding remarks.

2. Standard Particle Swarm Optimization

Particle swarm optimization is very popular optimization algorithm as only few parameters are there in this algorithm. PSO
consist of a group of particle know as swarm. PSO is an iterative method since many iterations of the procedure is to be done to
achieve the optimal value. In PSO, firstly an initial population of particles is initialized by arbitrarily initializing the position and
velocity vectors in the defined search space. Each particle has fitness value to check solution quality at each iteration. This fitness
value is obtained through objective functions which may be of minimization or maximization type, depending upon problem. Two
significant things in this algorithm needs to be noticed, personal best (Pb) solution accomplished up until now and the global best
(Gb) particle which is the best solution among all individual best solutions achieved until now. The dynamic journey of the
particle is controlled by its personal flying knowledge as well as the flying involvement of different particles (Pb and Gb) in the
swarm. Each particle’s velocity and position are updated by using equations (1) and (2) respectively.

Vel™(r+1) = W x Veli™(r) + Pihy * (Pui™(r) - Posi™(r)) + ¥2ha x (Gu™(r) - Posi™(r)) (1
Posi™(r+1) = Posi"(r) + Veli"(r+1) (2)

First term in velocity updation equation dominate the influence of earlier used velocities on the recent velocity or makes the
particle move is same direction with the same velocity [14]. Second term control the position of particle by returning it to
previous position if the previous position is better than the current position of particle according to objective function. While third
term controls the particle to follow the best particle in the swarm.

3. Proposed Sparse Particle Swarm Optimization
3.1. Proposed Initialization Process

In proposed Sparse Particle Swarm Optimization (Sparse-PSO), a particle is represented as a position vector of magnitude M,
where M indicates the number of dimensions or variables. Our aim is to achieve the speed-up the computation time of algorithm.
In this effort, the population of particles called swarm is arbitrarily generated within defined boundaries of size N but in the form
of sparse matrix representation to achieve our aim and reaching to the optimum point rapidly. After initialization of sparse matrix
based population, each particle is evaluated according to the fitness function. However, this procedure is performed in the initial
phase of algorithm.

3.2. Proposed Algorithm

e In proposed method, first of all swarm of size N is initialized similar to sparse matrix as deliberated in Segment I11-A aswell
as in the flow of proposed approach described below.

e Next, test functions are used to evaluate the optimal solution for every particle of swarm set. At this point, quality of
solution depends on the nature of test function that can be minimization or maximization problem.

e Afterwards, personal best and global best are selected and revised repeatedly in accordance with the quality of particles.

Inputs: Initialize parameters (N, M, R, ¥1, ¥2, Density)
Output: global best solution and respective position vector;

Proposed Algorithm (Sparse-PSO):
1) Initialize sparse based swarm of size N arbitrarily in search space by using a method ‘sprand(N, M, Density)’” whichgenerates
an arbitrary N by M sparse matrix in which number of non-zero entries are around N*M*Density;
2) For every particle
3) Compute fitness of particle using objective function;
4) Set personal best (F);
5) End of for
6) Set global best (&z);
7) While number of iterations are not met
8) For each particle
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9) Revise the velocity and location of particle by equations (1) and (2);
10) Determine fitness of new revised particle;

11) Update personal best;

12) End of for

13) Hence, update global best;

14) End of while loop

4. Experiment and Results
4.1. Benchmark Functions

The efficacy of the proposed Sparse-PSO algorithm is verified using several experiments conducted on fourteen benchmark
functions taken from [15] with different characteristics. The functions used to test our proposed method have been listed in
Appendix A. Table 1 represents the bound ranges and global minimum value of benchmark functions where dimension, problem
domain size, and optimal solution are denoted by M, Lb < xi< Ub, and f(X") respectively. Out of these functions, the Exponential
function (f1), the Sphere function (f2), and the Step function (f3) are unimodal in nature whereas the Ackley function (fs), the
Periodic function (fs), the Quartic function (fs), and the Qing function (f7) are multimodal in nature.

Table 1: -Detail of Benchmark Functions

Fl\lllall::t?o(;lfs Range Global Minima
Exponential -1<x;<1 f1(X") = -1
Sphere -100 < x; < 100 (X)) =0
Step 100<x<100 f(X) =0
Ackley -32<x;<32 f(X) =0
Periodic -10<x<10 f5(X") = 0.9
Quartic -1.28<x;<1.28 fs(X") = 0 + noise
Qing -500 < x; < 500 (X" =0

4.2. Parameter Setup

The basic parameter settings are defined in Table 2. All experimental results of the algorithms namely Standard-PSO and Sparse-
PSO are collected from 25 independent runs, each involving 2000 iterations.

Table 2: - Parameter Setting for Algorithms

Parameter PSO Sparse-PSO
Population Size (N) 150 150
Dimension (M) 30 30
Acceleration factor
Y1 and ¥2) 1.5 1.5
Density - 0.51
R (total number of
iterations) 2000 2000
Max (total number of
( runs) 25 25

4.3. Experiment Results

In this work, swarm size is taken as 150 and dimension as 30 for all the functions. Both the mentioned algorithms are
implemented independently 25 times for 2000 iterations on each problem of benchmark function. The data achieved from 25
independent runs are given in Tables 3 and 4. Table 3 which shows a correlation of the computation time as mean time, best time,
and worst time taken by both the algorithms during each run. By analyzing the outcomes of Table 3, it very well may be inferred
that our proposed Sparse-PSO algorithm has a far superior execution time compared with the Standard-PSO algorithm. Also,
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Table 4 shows the performance achieved by Sparse-PSO and the Standard-PSO in the terms of mean (average of global values),
best (minimum in global values), worst (maximum in optimum values), and std. (standard deviation between global values).

Fig. 1 represents the mean of best computation time for all the functions used in this work and also concludes that proposed
Sparse-PSO takes less execution time overall with respect to Standard-PSO. Convergence graphs for each function are designed
in Fig. 2 where the horizontal axis shows the number of iterations and the vertical axis represents the costs of each benchmark
function for all iterations. It can be seen from Fig. 2(a) that for Exponential function start point of proposed method is better than
Standard-PSO. Next, both the methods converge to optimal point in almost same manner. Fig. 2(b) represents the convergence
graph for Sphere function which shows that start point as well as convergence curve of proposed method is better than Standard-
PSO. Convergence graph for Step function are almost equal for both the algorithms is reported in Fig. 2(c). Fig. 2(d) demonstrates
that in Sparse-PSO method the graph for Ackley function reaches global optimum point while in Standard-PSO approach the
graph converges earlier before reaching the global optimum point. Sparse-PSO performs well for Periodic function presented in
Fig. 2(e) as it converges firstly than Standard-PSO. Figures 2(f) and 2(g) determine that when the number of iterations is low the
Sparse-PSO method enhances the results as compared to the Standard-PSO and later on both methods are showing similar results
when number of iteration is high. It can be concluded from Fig. 2 that the proposed Sparse-PSO algorithm starts with better
function value compared to Standard-PSO algorithm for all the functions and reaches to the global optimum.

Table 3: - Comparative Analysis of Standard-PSO and Sparse-PSO in terms of Computation Time (in Sec.)

Standard-PSO Sparse-PSO Time

Functions Time (Sec.) (Sec.)
Mean  16.2440 12.4108
Exponential Best 14.2552 12.0264
Worst  18.2122 15.6286
Mean  17.9444 12.0551
Sphere Best 15.3946 11.6846
Worst  22.3657 15.0164
Mean  13.1506 11.8242
Step Best 12.7770 11.2875
Worst  13.7343 13.4691
Mean  20.1344 13.2763
Ackley Best 18.2952 11.9703
Worst  22.0618 23.0440
Mean  15.5580 11.9585
Periodic Best 12.9640 11.4463
Worst  19.0293 15.5228
Mean  15.6129 13.4802
Quartic Best 14.6902 13.3035
Worst  16.6461 14.1285
Mean  17.4904 11.8417
Qing Best 12.8546 11.5059
Worst  20.3011 12.6486
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Fig.1. Overall average computation time for all functions
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Table 4: - Comparative Analysis of Standard-PSO and Sparse-PSO in terms of performance

Standard-PSO Final

Sparse-PSO Final

Functions f(X) value f(X) value
Mean -1.0000 -1.0000
Best -1.0000 -1.0000
Exponential Worst -1.0000 -1.0000
Std. 8.2927¢16 5.8922 g16
Mean 1.0302 &% 5.3397 e22
Best 9.0677 &0 6.9299 g%
Sphere Worst 2.3039 % 1.1973 20
Std. 4.5988 20 2.3922 g2
Mean 1.1600 1.2000
Best 0 0
Step Worst 5 5
Std. 1.2138 1.1180
Mean 0.8266 0.6943
Best 4.1478 13 6.2172 13
Ackley Worst 2.4083 2.3168
Std. 0.7686 0.7471
Mean 1.0000 1.0000
Best 1.0000 1.0000
Periodic Worst 1.0000 1.0000
Std. 9.0876 €1 7.8382 ¢1°
Mean 0.0069 0.0054
Best 0.0020 0.0018
Quartic Worst 0.0187 0.0200
Std. 0.0038 0.0040
Mean 2.6747 et 6.4860 et
Best 2.7593 % 3.1645 26
Qing Worst 4.9303 16 1.1821 ¢%°
Std. 1.0006 16 2.4831 e16
‘u-l T T T T T T T T T
- Standard-PSO
# Sparse-PSO
03§ 1
04 F 1
8 -05 1
- 06 :
-0.7 §
-08 &
-09 K .
0 200 400 600 800 1000 1200 1400 1600 1800 2000

(@)

Iterations

24



Gandhinagar University - Special Edition ICDSIA-2023 (Fifteenth Volume-I, 2023)

4 x10t
= Standard-PSO
35 Sparse-PSO |1
2 ]
25 §
I ]
Q-N
15 &
1 i
0s i E

0 200 400 600 SO0 1000 1200 1400 1600 1800 2000
Tterations

(b)

x10%

e

0s L
i} 200 400 600 800 1000 1200 1400 1600 1800 2000
Iterations

(©)

20 - . .
Standard-PSO
= Sparse-PSO

18

16

14

Q_\r

8

6

4

2

0 | |

0 200 400 600 SO0 1000 1200 1400 1600 1800 2000

Tterations
(d)
9
Standard-PSO

8 Sparse-PSO |
7 i
6 g

LX)

o 200 400 600 800 1000 1200 1400 1600 1800 2000
Iterations

(e)

25



Gandhinagar University - Special Edition ICDSIA-2023 (Fifteenth Volume-I, 2023)

40

= Standard-PSO

35 Sparse-PSO

30

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iterations

(

10
7 =10

Standard-PSO
Sparse-PSO

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iterations

(&
Fig.2. Convergence graphs of Sparse-PSO and Standard-PSO for seven test functions (a) Exponential,

(b) Sphere, (c) Step, (d) Ackley, (e) Periodic, (f) Quartic, (g) Qing

5. Conclusion and Future Directions

A new initialization technique on the basis of sparse representation has been proposed for PSO in this paper. The main objective
of the proposed Sparse-PSO algorithm is to reduce the computation time. Seven benchmark functions as listed in Segment IV-A
have been used to test the proposed method, and the outcomes of the same are compared with the standard approach. It is clear
from results that the Sparse-PSO takes less computation time as compared to the Standard-PSO. Sparse- PSO over performs
Standard-PSO in terms of execution time with an average speed-up of 24%, 33%, 10%, 34%, 23%, 13%, and 32% for the
exponential function, Sphere function, Step function, Ackley function, Periodic function, Quartic function, and Qing function
respectively. The proposed method achieves the global best value with low computation time compared to Standard-PSO. The
future direction of this work would be to achieve more improvement by correcting and updating the used parameters and

performing this method on more complex functions.

Appendix A: Benchmark Functions
f (X) =fexp[70.5§ xfj

fL00=-2x

F.00-3([(aro.5) )

f A(X)=eXP(l)—20*exp[—OQWJ—exp['\IAicos(ZHXi)]Jrzo f (x)=1+ ésinz(xi),o. 10lZhx)
f S(X):gifor random[0,1)

f,00-3(x?—i)
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